Separable Trusfuruction
G is separeble it
$O(f)=A+B$ for some matinx A, B.
Remule

$$
\begin{aligned}
& \vec{f}_{i} \text { : } \because \text { th col } A f=A\left[\overrightarrow{f_{1}}|\cdots| \mid \overrightarrow{f_{N}}\right] \\
& =\left[A \bar{f}_{1}|\cdots| A \bar{q}_{N}\right] \\
& \vec{f}_{j}^{\prime}: j \text {-throu }
\end{aligned}
$$

\therefore Operation on Columas

$$
\begin{aligned}
f B & =\left[\begin{array}{l}
-\vec{t}_{1}- \\
- \\
\vec{f}_{2}^{\prime}- \\
\vdots \\
\vec{t}_{i}-
\end{array}\right] B \\
& =\left[\begin{array}{l}
-\vec{f}_{1}^{\prime} B- \\
\vdots \\
-\vec{f}_{N} B-
\end{array}\right]
\end{aligned}
$$

\therefore Operatim on wows
It is called Separuble as it can be seponcted into oparations on rows and columus.

Example
Suppose 2 Transfumatim Matirx:

$$
H=\left[\begin{array}{llll}
2 & 0 & 8 & 0 \\
1 & 2 & 4 & 8 \\
6 & 0 & 4 & 0 \\
3 & 6 & 2 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& S=H f=\left[\begin{array}{llll}
2 & 0 & 8 & 0 \\
1 & 2 & 4 & 8 \\
6 & 0 & 4 & 0 \\
3 & 6 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right] \\
&=\left[\begin{array}{lll}
1 \\
1
\end{array}\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right] 4\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\right. \\
& 3 j\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\left[\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]\right. \\
& {\left.\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right]\right] } \\
& g=\left[\begin{array}{ll}
1 & A\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]+4 A\left[\begin{array}{l}
f_{3} \\
t_{4}
\end{array}\right] \\
3 A\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]+2 A\left[\begin{array}{l}
f_{3} \\
t_{4}
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

reshape \downarrow

$$
\begin{aligned}
g & =\left[1 A\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]+4 A\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right] \quad 3 A\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]+2 A\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right]\right] \\
& =A\left[\begin{array}{ll}
f_{1} & f_{3} \\
f_{2} & f_{4}
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]
\end{aligned}
$$

\therefore Sepmable, $O(f)=\left[\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right] f\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$

Fwhenius Vorm

$$
\begin{aligned}
& A \in \mathbb{R}^{N \times N} \\
& \|A\|_{F}:=\sqrt{\sum_{1 \leq i, j \leq N} \sum_{i}\left|a_{i j}\right|^{2}}
\end{aligned}
$$

$\|A-B\| F$ can be a measiure of sinilerty betruen A and B.
e.g.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find α s.t. $\quad\|A-\alpha B\| F$ is minimired.

Note nimimising $\|A-\alpha B\|_{F}$ \Leftrightarrow minimiz $\|A-\alpha B\|_{F}^{2}$

$$
\begin{aligned}
& \|A-\alpha B\|_{F}^{2}=\sum_{1 \leq i, j \leq 3}\left(a_{i j}-\alpha\right)^{2} \\
& \frac{\partial}{\partial \alpha}\|A-\alpha B\|_{F}^{2}=\sum_{1 \leq i, j \leq 3} \sum_{1} 2\left(\alpha-a_{i} j\right) \\
& \frac{\partial}{\partial \alpha}\|A-\alpha B\|_{F}^{2}=0 \\
& \Leftrightarrow 3^{2} \alpha=\sum_{1 \leq i, j \leq 3} a_{i j} \Leftrightarrow \alpha=\frac{1}{q_{1 \leq i, j \leq 3} a_{i, j}}
\end{aligned}
$$

$\therefore \alpha$ is the average of values of A.
$S V D$

$$
A \in \mathbb{R}^{M \times N}
$$

A an be decomposed to:

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times M}$, orthogme
$\sum \in \mathbb{R}^{(n \times N}$, won n. negate diagral, - else where
$V \in \mathbb{R}^{N \times N}$, orthogne (
Example

$$
A:\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Note $A=U \Sigma V^{\top}$

$$
\begin{aligned}
A A^{\top} & =\left(u \Sigma v^{\top}\right)\left(v \Sigma^{\top} u^{\top}\right) \\
& =u\left(\Sigma \Sigma^{\top}\right) u^{\top} \\
A^{\top} A & =\left(v \Sigma^{\top} u^{\top}\right)\left(U^{\Sigma} v^{\top}\right) \\
& =v\left(\Sigma^{\top} \Sigma\right) v^{\top}
\end{aligned}
$$

where $\bar{\Sigma} \Sigma^{\top}, \Sigma^{\top} \Sigma$ are
diggonas square chatirx.
So finding the dragonatization of $A^{\top} A$ and $A A^{\top}$ gives us SUD
To find Eigmvectirs and Eynuches of $A A^{\top}$:

$$
\begin{aligned}
& A A^{\top}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& 0=\operatorname{det}\left(A A^{\top}-\lambda I\right)=(2-\lambda)^{2}-1 \\
& 0=\lambda^{2}-4 \lambda+3 \\
& \Leftrightarrow \quad 0=(\lambda-1)(\lambda-3) \\
& \Leftrightarrow \quad \lambda=3 \text { or } \lambda=1 \text {. } \\
& \lambda=3 \text {; } \\
& {\left[\begin{array}{cc}
2.3 & 1 \\
1 & 2.3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]} \\
& \therefore \text { eignvectir }=a_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\lambda=1:
$$

$$
\left[\begin{array}{cc}
2-1 & 1 \\
1 & 2-1
\end{array}\right] \xrightarrow{R R E \bar{r}}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

$$
\text { Normalizin, } U=\left[\begin{array}{ll}
-1 / 5 & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

$$
\text { ath } \sum=\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$$
A=u \Sigma V^{\top}
$$

$\vec{u}_{i} i$ ith wl of u

$$
\begin{aligned}
& u^{\top} A=\Sigma V^{\top} \\
& {\left[\begin{array}{l}
-\vec{u}_{i}^{i}- \\
-\vec{u}_{2}^{i}-
\end{array}\right] A=\left[\begin{array}{lll}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0
\end{array}\right]\left[\begin{array}{l}
-\vec{u}_{1}^{i} \\
-\vec{v}_{i} \\
-\overrightarrow{v_{3}}-
\end{array}\right]} \\
& {\left[\begin{array}{l}
-\left(A^{\top} \vec{u}_{1}\right)^{\top}- \\
-\left(A^{i} \vec{u}_{2}\right)^{\top}-
\end{array}\right]=\left[\begin{array}{l}
-\sigma_{1} \vec{v}_{1}^{i}- \\
-\sigma_{2} \vec{v}_{2}^{i}-
\end{array}\right]} \\
& \therefore \vec{v}_{1}=\frac{1}{\sigma_{1}} A^{\top} \vec{v}_{1}, \quad \vec{v}_{2}=\frac{1}{\sigma_{2}} A^{\top} \vec{v}_{2} \\
& \vec{v}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
1 / \sqrt{6} \\
\sqrt{2 / 3} \\
1 / \sqrt{6}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\vec{v}_{2} & =\frac{1}{1}\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

\vec{v}_{3} can be calmleted by closs pooduct:

$$
\begin{aligned}
\vec{v}_{3} & =\vec{v}_{1} \times \vec{v}_{2} \\
& =\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 / \sqrt{6} & \sqrt{5 / 3} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 / \sqrt{3} \\
1 / \sqrt{3} \\
-1 / \sqrt{3}
\end{array}\right] \\
\therefore A & =U \bar{\Sigma} V^{1} \\
\text { whwe } U & =\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] \\
\Sigma & =\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
\sqrt{2 / 3} & 0 & 1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & -1 / \sqrt{3}
\end{array}\right]
\end{aligned}
$$

